Effect of Hydrogen Adsorption on Pt Nanoparticle Encapsulated in NaY Zeolite: Combined Study of WT XAFS and DFT Calculation

Author:

Cho Sung June1,Ko Chang Hyun1ORCID,Pak Chanho2

Affiliation:

1. Department of Chemical Engineering, Chonnam National University, 77 Yongbong-Ro, Buk-gu, Gwangju 61186, Republic of Korea

2. Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea

Abstract

Extensive research has been conducted on platinum nanoparticles or clusters supported on zeolite for various catalytic applications, primarily due to the well-defined structure contained within the pore. The preparation and characterization of these particles have been thoroughly examined using advanced techniques such as X-ray absorption fine structures (XAFSs), both in situ and ex situ. In this study, we employed the Wavelet method to analyze the structure of platinum nanoparticles encapsulated within the supercage of a Y zeolite, where XAFS data were collected over a temperature range of 100 K to 423 K, both with and without hydrogen. The adsorption of hydrogen caused a relaxation in the structure of the platinum nanoparticles, thus leading to a decrease in the Pt–Pt distance and resulting in a lower Debye–Waller factor compared to bare nanoparticles. This structural change induced by hydrogen chemisorption aligns with the findings of the density functional theory (DFT) calculations for Pt13 nanoparticles located in the supercage. The relaxation of the structure results in charge redistribution, thereby ultimately generating atomic hydrogen with a partial negative charge, which is crucial for catalytic processes.

Funder

project for Cooperative R&D between Industry, Academy, and Research Institute

Ministry of SMEs and Startups and also by the Ministry of Trade, Industry, and Energy

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3