Templating Synthesis of Hierarchically Porous Carbon with Magnesium Salts for Electrocatalytic Reduction of 4-Nitrophenol

Author:

Gan Wanyi1,Xiao Ping1,Zhu Junjiang1ORCID

Affiliation:

1. Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China

Abstract

Hierarchically porous carbon (PC) was synthesized by a templating method, using magnesium salts (Mg(HCO3)2, MgC2O4 and MgO) as template precursors and citric acid as carbon precursor. During the carbonization process, besides the production of MgO particles, many gases (e.g., CO2/NO2/H2O) were also released and acted as a porogen to generate pores in carbon. The resulting composite (MgO@C) was subsequently treated with HCl solution to remove the MgO templates, yielding hierarchically porous carbon. The surface oxygen functional groups over porous carbon were characterized by TPD and XPS, which showed that the PC-bic, synthesized using Mg(HCO3)2 as the template precursor, had the highest value among the PCs. As expected, the PC-bic exhibited the best performances for electrocatalytic reduction of 4-nitrophenol, with a peak current of −135.5 μA at −0.679 V. The effects of 4-nitrophenol concentration, buffer solution pH and scanning rate on the electrocatalytic activities, as well as the stability of PC-bic for the reaction were investigated.

Funder

National Natural Science Foundation of China

Department of Science and Technology of Hubei Province

Department of Education of Hubei Province

Opening Project of Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3