Long-Term Hydrogen Production from a Methanol–Water Solution Catalyzed by an Iridium Complex

Author:

Furukawa Shohichi1,Kubota Kaito1,Wang Han1,Gong Haotong1,Kajita Shumpei1,Fujita Ken-ichi1ORCID

Affiliation:

1. Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan

Abstract

Long-term hydrogen production from a methanol–water solution was achieved by developing a new reaction system employing a homogeneous iridium catalyst bearing a bipyridonate-type functional ligand. By optimizing the methanol:water ratio of the reaction solution, the efficiency of hydrogen production was greatly improved in relation to that reported in our previous studies. Additionally, the effect of the scale of reaction was investigated. It was found that a small-scale reaction led to a longer lifetime of the iridium catalyst, accomplishing long-term continuous hydrogen production at a constant rate for over 500 h. Furthermore, procedures for catalyst reuse were studied. After hydrogen production for 400 h, all volatiles in the reaction system were removed under vacuum. This simple procedure is highly effective for the reactivation and reuse of the catalyst. Finally, hydrogen production (13.7 L, 562 mmol) from methanol (12.3 mL, 303 mmol) and water (5.46 mL, 303 mmol), in a continuous reaction for 800 h, was achieved.

Funder

Japan Society for the Promotion of Science

JST SPRING

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fabrication and performance of a 3D porous graphene aerogel-supported Ni–ZnS composite photocatalyst;Colloids and Surfaces A: Physicochemical and Engineering Aspects;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3