Engineering the Biosynthesis of prFMN Promotes the Conversion between Styrene/CO2 and Cinnamic Acid Catalyzed by the Ferulic Acid Decarboxylase Fdc1

Author:

Zhu Xiaoni1,Li Hongfei1,Ren Jiangang1,Feng Yanbin1ORCID,Xue Song1

Affiliation:

1. School of Bioengineering, Dalian University of Technology, Dalian 116024, China

Abstract

Enzymatic decarboxylation and carboxylation are emerging as prospective processes to produce high-value compounds under mild conditions. Ferulic acid decarboxylase Fdc1 catalyzes broad substrate tolerance against α, β-unsaturated carboxylic acids, and provides green routes for carbon dioxide fixation with the reversible carboxylation, while the activity of the enzyme is limited by the indispensable cofactor prenylated flavin (prFMN), which is unstable and is rarely detected in nature. In this study, a prFMN efficient synthesis route was built using six exogenous enzymes introduced into E. coli cells, leading to the construction of a powerful cell catalyst named SC-6. Based on the metabolic analysis, the results indicated that the reduction of FMN to FMNH2 was the bottleneck in prFMN synthesis pathway, and introducing FMN reductase increased the production of prFMN 3.8-fold compared with the common flavin prenyltransferase UbiX overexpression strain. Using SC-6 cell catalyst, the decarboxylation activity of Fdc1 increased more than 20 times with cinnamic acid and 4-acetoxycinnamic acid as substrates. Furthermore, the reversible carboxylation reaction was carried out, and the cell catalyst presented 20 times carbon dioxide fixation activity using styrene to produce cinnamic acid. Finally, the maximum yield of cinnamic acid catalyzed by SC-6 achieved 833.68 ± 34.51 mM·mg−1 in two hours. The constructed prFMN pathway in vivo provides fundamentals for efficient decarboxylation and carbon fixation reactions catalyzed by prFMN-dependent enzymes.

Funder

National Key Research and Development Program

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3