Effect of Morphological Modification over g-C3N4 on Photocatalytic Hydrogen Evolution Performance of g-C3N4-Pt Photocatalysts

Author:

Hoang Thi Van AnhORCID,Nguyen Phuong Anh,Shin Eun WooORCID

Abstract

In this study, the morphological properties of g-C3N4 in g-C3N4-Pt photocatalysts were modified by a simple hydrothermal treatment for photocatalytic hydrogen evolution. In addition, the morphological modification effect of g-C3N4 on the hydrogen evolution performance was investigated. The long-time hydrothermal treatment clearly changed the morphology of g-C3N4 by building extended melem units with more oxygen functional groups at the defect edges of the extended melem units, which was evidenced by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) measurements. The different morphological features of g-C3N4 resulted in lower photoluminescence (PL) emission intensity in PL spectra and a smaller semicircle radius in electrochemical impedance spectroscopy (EIS) data. This indicates the more efficient charge separation of the g-C3N4-Pt photocatalyst with a modified morphology. Consequently, morphologically modified g-C3N4-Pt showed a higher photocatalytic hydrogen evolution rate due to the better charge separation efficiency.

Funder

National Research Foundation of Korea

Korean government

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3