Abstract
In this study, the morphological properties of g-C3N4 in g-C3N4-Pt photocatalysts were modified by a simple hydrothermal treatment for photocatalytic hydrogen evolution. In addition, the morphological modification effect of g-C3N4 on the hydrogen evolution performance was investigated. The long-time hydrothermal treatment clearly changed the morphology of g-C3N4 by building extended melem units with more oxygen functional groups at the defect edges of the extended melem units, which was evidenced by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) measurements. The different morphological features of g-C3N4 resulted in lower photoluminescence (PL) emission intensity in PL spectra and a smaller semicircle radius in electrochemical impedance spectroscopy (EIS) data. This indicates the more efficient charge separation of the g-C3N4-Pt photocatalyst with a modified morphology. Consequently, morphologically modified g-C3N4-Pt showed a higher photocatalytic hydrogen evolution rate due to the better charge separation efficiency.
Funder
National Research Foundation of Korea
Korean government
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献