Methanol Steam Reforming over La1-xSrxCeO3-δ Catalysts for Hydrogen Production: Optimization of Operating Parameters

Author:

Chen Gaokui1,Shen Qiuwan1ORCID,Zhang Xin1,Cai Zhongwen1,Shao Zicheng1,Li Shian1ORCID,Yang Guogang1ORCID

Affiliation:

1. Marine Engineering College, Dalian Maritime University, Dalian 116026, China

Abstract

In this study, a series of A-site strontium-doped La1-xSrxCeO3-δ (x = 0.2, 0.4, 0.6, 0.8) perovskite catalysts were synthesized via the ethylenediaminetetraacetic acid (EDTA) sol-gel method for hydrogen production by methanol steam reforming. The fresh and the reduced catalysts are characterized by scanning X-ray (XRD), energy dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) techniques. Results showed that La0.6Sr0.4CeO3-δ exhibited the best performance among the La1-xSrxCeO3-δ catalysts. The operating parameters were optimized to study the catalytic performance of La0.6Sr0.4CeO3-δ, including catalytic temperature, water–methanol ratio (W/M) and liquid hourly space velocity (LHSV). However, the excessive strontium content led to a decrease in hydrogen production amount per unit time, and the high W/M promoted the reverse water–gas shift reaction (RWGS), which resulted in a decrease in CO selectivity and an increase in CO2 selectivity. In addition, the optimal reaction parameters are as follows: reforming temperature of 700 °C; W/M of 3:1; LHSV of 20 h−1. Furthermore, the methanol conversion rate of La0.6Sr0.4CeO3-δ can reach approximately 82%, the hydrogen production can reach approximately 3.26 × 10−3 mol/g(cat)/min under the optimum reaction conditions. Furthermore, La0.6Sr0.4CeO3-δ exhibits high hydrogen selectivity (85%), which is a promising catalyst for MSR application.

Funder

China Postdoctoral Science Foundation

Science and Technology Innovation Foundation of Dalian

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3