Laser-Induced Nitrogen-Doped Graphene Composite Iron–Cobalt Hydroxide for Methylene Blue Degradation via Electrocatalytic Activation of Peroxymonosulfate

Author:

Chen Liqin1,Liao Jianjun1ORCID,Li Chen2,Xu Yandong1,Ge Chengjun1,Xu Wen1,He Xiong3,Liu Wenyu4

Affiliation:

1. Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China

2. Hainan Provincial Ecological and Environmental Monitoring Centre, Haikou 571126, China

3. Shandong Jingbo Holding Group Co., Ltd., Binzhou 256599, China

4. Shandong Haitian Environmental Protection Technology Co., Ltd., Binzhou 256599, China

Abstract

With the acceleration of industrialization, the removal of refractory organic dyes from water and how to promote its practical application remains a challenge. Herein, we synthesized an FeCo-LDH/LI-NDG composite electrode material by a simple laser-induced technique on polyimide films, which could electrocatalytically activate peroxymonosulfate (PMS) to completely degrade MB in about 6 min. The reaction rate constant (kobs) was 0.461 min−1. It was faster than most of the currently reported electrocatalysts. The reaction system demonstrated good interference resistance and catalytic effectiveness in the pH range of 3 to 9. According to the chemical quenching and electron paramagnetic resonance (EPR) experiments, the non-radical pathway of 1O2 and the radical pathways of SO4·−, ·OH and O2·− were involved in the reaction synergistically, with 1O2 playing the dominant role. 1O2 was produced through the dual pathway of PMS electron loss at the anode and O2·− intermediate transformation at the cathode. The two activation methods of electro-activation and catalytic activation of PMS had synergistic effects to achieve high efficiency in the whole process of production, reaction and recovery, providing new ideas to advance practical applications.

Funder

Haikou Science and Technology Planning Project

Scientific Research Project of Hainan Higher Education Institutions

Hainan University Research Start-up Fund

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3