Recent Progress in Surface-Defect Engineering Strategies for Electrocatalysts toward Electrochemical CO2 Reduction: A Review

Author:

Balu Sridharan12ORCID,Hanan Abdul3ORCID,Venkatesvaran Harikrishnan1,Chen Shih-Wen12ORCID,Yang Thomas C.-K.12ORCID,Khalid Mohammad34ORCID

Affiliation:

1. Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan

2. Precision Analysis and Materials Research Center, National Taipei University of Technology, Taipei 10608, Taiwan

3. Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya 47500, Malaysia

4. School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India

Abstract

Climate change, caused by greenhouse gas emissions, is one of the biggest threats to the world. As per the IEA report of 2021, global CO2 emissions amounted to around 31.5 Gt, which increased the atmospheric concentration of CO2 up to 412.5 ppm. Thus, there is an imperative demand for the development of new technologies to convert CO2 into value-added feedstock products such as alcohols, hydrocarbons, carbon monoxide, chemicals, and clean fuels. The intrinsic properties of the catalytic materials are the main factors influencing the efficiency of electrochemical CO2 reduction (CO2-RR) reactions. Additionally, the electroreduction of CO2 is mainly affected by poor selectivity and large overpotential requirements. However, these issues can be overcome by modifying heterogeneous electrocatalysts to control their morphology, size, crystal facets, grain boundaries, and surface defects/vacancies. This article reviews the recent progress in electrochemical CO2 reduction reactions accomplished by surface-defective electrocatalysts and identifies significant research gaps for designing highly efficient electrocatalytic materials.

Funder

National Science and Technology Council, Taiwan

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3