Synthesis of g-C3N4@ZnIn2S4 Heterostructures with Extremely High Photocatalytic Hydrogen Production and Reusability

Author:

Chang Yu-Cheng1ORCID,Chiao Yung-Chang1,Chang Chi-Jung2ORCID

Affiliation:

1. Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan

2. Department of Chemical Engineering, Feng Chia University, Taichung 40724, Taiwan

Abstract

The g-C3N4@ZnIn2S4 heterostructures were successfully synthesized through a combination of thermal annealing and hydrothermal methods. To enhance the photocatalytic hydrogen production performance and explore the interface between charge carriers, heterostructures of g-C3N4@ZnIn2S4 were fabricated using varying weights of g-C3N4 nanostructures under visible light irradiation. Remarkably, the photocatalytic hydrogen production efficiency of g-C3N4@ZnIn2S4 heterostructures with 0.01 g g-C3N4 nanostructures was significantly improved, showing approximately 228.6 and 2.58 times higher than that of g-C3N4 nanostructures and ZnIn2S4 nanostructures, respectively. This enhancement in photocatalytic performance is attributed to the effective utilization of visible light and the efficient separation of photogenerated electron-hole pairs facilitated by the heterojunction structures. Moreover, the reusability test validated the outstanding performance of g-C3N4@ZnIn2S4 heterostructures, as they maintained high photocatalytic hydrogen production even after undergoing eight cycles without any noticeable decrease in efficiency. This study offers a promising strategy for designing and synthesizing an environmentally friendly g-C3N4@ZnIn2S4 heterojunction with potential applications in photocatalytic hydrogen evolution.

Funder

Ministry of Science and Technology, Taiwan

National Science and Technology Council, Taiwan

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3