Sonocatalytic Degradation of Chrysoidine R Dye Using Ultrasonically Synthesized NiFe2O4 Catalyst

Author:

Gote Yogesh M.1,Sinhmar Pankaj S.1,Gogate Parag R.1ORCID

Affiliation:

1. Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India

Abstract

The novel ultrasound-assisted co-precipitation method was successfully applied for the synthesis of the NiFe2O4 catalyst, which offered the advantages of lower particle size and better crystalline structure without affecting the phase planes. Furthermore, the efficacy of synthesized catalysts was evaluated using ultrasound-assisted catalytic degradation of Chrysoidine R dye. The study was designed to evaluate the effect of different parameters, such as pH, duty cycle, power output, and catalyst loading on Chrysoidine R dye degradation using a 5 wt% NiFe2O4 catalyst synthesized ultrasonically. At the optimized condition of 120 W ultrasonic power, 70% duty cycle, 3 pH, 0.5 g/L catalyst loading, and 160 min of reaction time, the best degradation of 45.01% was obtained. At similar conditions, the conventionally synthesized catalyst resulted in about 15% less degradation. Chrysoidine R dye degradation was observed to follow second-order kinetics. To accelerate the degradation, studies were performed using hydrogen peroxide at various loadings where it was elucidated that optimum use of 75 ppm loading showed the maximum degradation of 92.83%, signifying the important role of the co-oxidant in ultrasound-assisted catalytic degradation of Chrysoidine R dye. Overall, the present study clearly demonstrated the potential benefits of ultrasound in catalyst synthesis as well as in catalytic degradation.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3