Affiliation:
1. Physics Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
2. Physics Department, Lancaster University, Lancaster LA1 4YB, UK
Abstract
The synthesis of CaCO3/Cu2O/GO nanocomposites was developed by sol-gel auto-combustion method. The analysis of structure was completed on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and environmental scanning electron microscopy (ESEM). The XRD spectra of the nanocomposites matched the crystal structure of CaCO3/Cu2O. The average crystal size was 20 nm for Cu2O and 25 nm for CaCO3 nanoparticles. FTIR data showed the absorption bands of Cu2O and GO. Raman spectroscopy data confirmed the formation of GO sheets. ESEM micrographs displayed spherical nanoparticles dispersed in GO sheets. X-ray photoelectron spectroscopy showed the peaks of Cu 2p, O 1s, C 1s, Cu 3s, and Ca 2p. The spectra of optical absorption revealed an absorption band of around 450 nm. The calcium content increase led to a decrease in the optical energy gap from 2.14 to 1.5 eV. The production of hydrogen from NaBH4 across the methanolysis reaction was accelerated by the CaCO3/Cu2O/GO nanocomposites. Therefore, these nanocomposites are superior in catalytic hydrogen production systems.
Funder
Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献