Features of the Catalytic Cracking of Propane with a Step-Wise Change PrxYb2−xZr2O7

Author:

Markova Ekaterina B.1,Cherednichenko Alexander G.1,Smirnova Sofia S.1,Sheshko Tatiana F.1ORCID,Kryuchkova Tatiana A.1

Affiliation:

1. Department of Physical and Colloidal Chemistry, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia

Abstract

In this paper, the features of catalytic cracking of propane with a step-wise change in the composition of the catalyst from Pr2Zr2O7 to Yb2Zr2O7 were considered. For the research, samples of catalysts Pr2Zr2O7, (Pr0.75Yb0.25)2Zr2O7, (Pr0.5Yb0.5)2Zr2O7, (Pr0.25Yb0.75)2Zr2O7 and Yb2Zr2O7 were synthesized and analyzed. Analysis of the results from catalytic experiments showed that for the catalyst (Pr0.25Yb0.75)2Zr2O7, at a temperature of 700 °C, the conversion of propane reaches values of 100%, but for Yb2Zr2O7, this indicator decreases to 84%. The selectivity for ethylene is consistently reduced from 85% to 28% in several catalysts (Pr0.75Yb0.25)2Zr2O7 > Pr2Zr2O7 > (Pr0.5Yb0.5)2Zr2O7 >(Pr0.25Yb0.75)2Zr2O7 > Yb2Zr2O7. An increase in the number of surface adsorption centers leads to a predominant rupture of the C–C bond in the propane molecule with the formation of ethylene. When ytterbium ions are introduced into the catalyst, the amount of ethylene in the reaction products decreases, but the selectivity for propylene increases in the series Pr2Zr2O7 < (Pr0.75Yb0.25)2Zr2O7 < (Pr0.5Yb0.5)2Zr2O7 < Yb2Zr2O7 < (Pr0.25Yb0.75)2Zr2O7, which is associated with a decrease in the binding energy of carbon atoms in propane with the catalytic center during adsorption.

Funder

RUDN University Scientific Projects Grant System

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Reference28 articles.

1. Unconventional Chemistry for Unconventional Natural Gas;McFarland;Science,2012

2. Methane activation: The past and future;Tang;Energy Environ. Sci.,2014

3. Caspary, K.J., Gehrke, H., Heinritz-Adrian, M., and Schwefer, M. (2008). Handbook of Heterogeneous Catalysis, Wiley-VCH.

4. Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides;Sattler;Chem. Rev.,2014

5. Mian, M.I., Heinritz-Adrian, M., Wenzel, S., Knoll, O., Schwefer, M., and Gercke, H. (2016). Method for Dehydrogenation of Alkanes and Catalysts. (EA023151B1), International Patent Application.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3