Real-Time Degradation of Indoor Formaldehyde Released from Actual Particle Board by Heterostructured g-C3N4/TiO2 Photocatalysts under Visible Light

Author:

Jin Qing,Xiang Youlin,Gan Lu

Abstract

Indoor formaldehyde pollution causes a serious threat to human health since it is uninterruptedly released from wooden furniture. Herein, we prepared a g-C3N4-modified TiO2 composite photocatalyst and coated it on the surface of a commercial artificial particle board with the assistance of melamine formaldehyde adhesive. The g-C3N4/ TiO2 coating was then used to degrade formaldehyde which was released in real-time from the particle board under the irradiation of visible light. The results showed that compared with pure TiO2, the g-C3N4/ TiO2 composite with a heterojunction structure had a lower band gap energy (~2.6 eV), which could effectively capture luminous energy from the visible light region. Under continuous irradiation, the g-C3N4/ TiO2 photocatalytic coating was capable of degrading more than 50% of formaldehyde constantly released from the particle board. In the meantime, the photocatalytic coating also exhibited promising catalytic stability towards various formaldehyde release speeds, air flow velocities and environmental humidities. The hydroxyl radical and superoxide radical were found to be the predominant active species which triggered formaldehyde degradation. This study provides a feasible and practical approach for the improvement in indoor air quality through photocatalyst surface engineering.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3