Laser Irradiation-Induced Pt-Based Bimetallic Alloy Nanostructures without Chemical Reducing Agents for Hydrogen Evolution Reaction

Author:

Hu Taiping12,Fan Yisong345,Ye Yixing1,Cai Yunyu1,Liu Jun1,Ma Yao1,Li Pengfei1,Liang Changhao12

Affiliation:

1. Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

2. Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China

3. Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

4. Advanced Laser Technology Laboratory of Anhui Province, National University of Defense Technology, Hefei 230037, China

5. School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China

Abstract

Binary metallic alloy nanomaterials (NMs) have received significant attention because of their widespread application in photoelectrocatalysis, electronics, and engineering. Although various synthetic methods have been adopted to prepare binary alloy NMs, the formation of bimetallic alloy NMs by irradiating the mixed solutions of metal salts and metal powders, using a nanosecond pulsed laser in the absence of any reducing agent, is rarely reported. Herein, we report a simple method to fabricate PtX (X = Ag, Cu, Co, Ni) alloy NMs by laser irradiation. Taking PtAg alloys as an example, we present the growth dynamics of the PtAg alloys by laser irradiating a mixture solution of bulk Pt and AgNO3. The experimental process and evidenced characterization indicate that the photothermal evaporation induced by laser irradiation can cause the fragmentation of the bulk Pt into smaller parts, which alloy with Ag atoms extracted from Ag+ by solvated electrons (e−aq) and free radicals (Haq). These alloys were used as electrocatalysts for the hydrogen evolution reaction (HER), proving their potential application. Notably, in a 0.5 M H2SO4 solution, the PtNi alloy exhibited higher HER activity (44 mV at 10 mA/cm−2) compared to the untreated bulk Pt (72 mV). Our work provides unique insights into the growth processing of valuable Pt-based bimetallic alloy NMs by laser-assisted metallic alloying, which paves a path for the development of bimetallic alloy electrocatalysts.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of CAS

Collaborative Innovation Program of Hefei Science Center of CAS

Plan for Anhui Major Provincial Science & Technology Project

HFIPS Director’s Fund, Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3