Development of Quinary Layered Double Hydroxide-Derived High-Entropy Oxides for Toluene Catalytic Removal

Author:

Xue Tianshan,Wang Yiping,Yang Li,Li Zhe,Gao YanshanORCID,Wang Qiang

Abstract

In this work, a novel method for the preparation of high-entropy oxides (HEO) was successfully developed using multivariate composition layered double hydroxides (LDHs) as precursor. Thermal treatment over 600 °C led to the complete transformation of LDHs to single spinel phase HEOs. The performance of the obtained HEO catalysts in the removal of volatile organic compounds (VOCs) was studied with the catalytic oxidation of toluene as the probe reaction. The optimized HEO-600 catalyst showed impressive activity and stability over toluene catalytic oxidation, which resulted from the vast quantity of surface oxygen vacancies and the relative variable metal valence. The T50 and T90 values of HEO-600 were 246 and 254 °C, and the T90 value only presented a slight increase to 265 °C after a 10-cycle test. This work developed a simple way to obtain HEO materials and provide technical support for the application of HEO catalysts for VOCs removal.

Funder

Budget Surplus of Central Financial Science and Technology Plan

National Research Program for Key Issues in Air Pollution Control

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3