Abstract
The MnOх-ZrO2-CeO2 oxide catalysts were synthesized by co-precipitation method with varying (1) Zr/Zr + Ce molar ratio at constant manganese content of 0.3; (2) manganese content at constant Zr/Ce molar ratio of 1; (3) Mn/Mn + Zr molar ratio at constant Ce content of 0.5. Catalysts are characterized by XRD, N2 adsorption, TPR, and XPS. The catalytic activity of all the series was tested in the CO and propane oxidation reactions. In contrast to the variation of the manganese content, the Zr/Zr + Ce molar ratio does not significantly affect the catalytic properties. The dependence of the catalytic activity in CO oxidation on the manganese content has a «volcano» shape, and the best catalytic performance is exhibited by the catalyst with Mn/(Zr + Ce) = 1. In the case of propane oxidation reaction, there is «sigma» like dependence, activity increases with increase of Mn/(Mn + Zr + Ce) molar ratio up to 0.3, stabilizing with a further increase in the manganese content. XRD and XPS have shown that with an increase of the Mn concentration in the MnOx-ZrO2-CeO2 catalysts, the amount of crystalline manganese oxides such as Mn2O3 and Mn3O4, as well as the surface concentration of Mn cations, increases. While the content of MnxZryCe1-x-yO2 solid solution decreases, the concentration of manganese cations (x) in volume of MnxZryCe1-x-yO2 mixed oxide grows. The maximum activity in CO oxidation corresponds to the balance between the amount of the solid solution and the concentration of manganese cations in the volume of mixed oxide. The propane oxidation reaction is less sensitive to the state of manganese ion rather than to its amount. In this case, a decrease in the content of the MnxZryCe1-x-yO2 solid solution with increase in manganese amount in catalyst is compensated by an increase in content of crystalline manganese oxides and the surface concentration of manganese.
Funder
Russian Science Foundation
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献