Effects of Phosphorus Addition on the Hydrophobicity and Catalytic Performance in Methane Combustion of θ-Al2O3 Supported Pd Catalysts

Author:

Xiong Wei1,Wang Jun1,Wang Yunhao1,Wang Jianqiang1,Wang Chen2ORCID,Shen Gurong3ORCID,Shen Meiqing14

Affiliation:

1. Key Laboratory for Green Chemical Technology of the State Education Ministry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China

2. School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, China

3. School of Materials Science and Engineering, Tianjin University, Tianjin 257400, China

4. National Rare Earth Catalysis Research Institute, Dongying 257000, China

Abstract

A series of xPθ-Al2O3 supports modified with different amounts of phosphorus element were prepared and taken as supports of palladium catalysts for methane catalytic combustion. The impacts of phosphorus additives on the hydrophobicity of Pd/xPθ-Al2O3 and its performance of methane catalytic combustion in the absence of and presence of 8% water were systematically studied. It was found that the hydrophobicity of xPθ-Al2O3 changed with the increase of phosphorus content, which had a significant effect on the activity of methane catalytic combustion. The incorporation of phosphorus replaced the hydroxyl groups on the surface of Al2O3 in the form of phosphates, thus changing the density of hydroxyl groups of Al2O3 support. TGA, NH3-TPD, IR, and XPS were employed to illustrate the process of phosphate replacement. xPθ-Al2O3 with less than 1 wt.% phosphorus content had better hydrophobicity than the unmodified θ-Al2O3 and Pd/xPθ-Al2O3, therefore had better performance for methane catalytic combustion, which was attributed to the substitution of hydroxyl groups on the surface of θ-Al2O3 by PO43− and HPO42−. However, when the phosphorus content of Al2O3 was higher than 1 wt.%, the substitution of H2PO4− began to dominate, which would lead to poorer hydrophobicity and catalytic performance. This work will guide the design of methane catalytic combustion catalysts resistant to water inhibition problem.

Funder

Key R&D project of Shandong Province

National Key R&D Program of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3