Peroxymonosulfate Activation by Different Synthesized CuFe-MOFs: Application for Dye, Drugs, and Pathogen Removal

Author:

Fdez-Sanromán Antia1,Lomba-Fernández Bárbara1,Pazos Marta1,Rosales Emilio1,Sanromán Angeles1ORCID

Affiliation:

1. CINTECX, Department of Chemical Engineering, Universidade de Vigo, 36310 Vigo, Spain

Abstract

In this study, three CuFe-MOFs were successfully synthesized by a solvothermal process by changing the ratio of solvents, salts, or temperature. These MOFs named CuFe(BDC-NH2)R, CuFe(BDC-NH2)S, and CuFe(BDC-NH2)D showed rod-shaped, spindle-like, and diamond-like structures, respectively. The CuFe(BDC-NH2)D and CuFe(BDC-NH2)S were found to exhibit an improved PMS activation for Rhodamine B removal attaining levels around 92%. Their effective removal capability was investigated as a function of the pH, catalyst dosage, and the effect of the application of UV radiation. The best degradation system was photo-assisted activation of PMS when CuFe(BDC-NH2)D and CuFe(BDC-NH2)S were used. Under these conditions, the degradation of a mixture of antibiotic and anti-inflammatory drugs (sulfamethoxazole and antipyrine) was evaluated with the results revealing the total degradation of both drugs after 1 h. A higher antibacterial activity was attained with the system CuFe(BDC-NH2)R/PMS due to the high copper content with respect to the others.

Funder

BiodivRestore ERA-Net COFUND programme

Xunta de Galicia

European Regional Development Fund

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3