Effect of Different Zinc Species on Mn-Ce/CuX Catalyst for Low-Temperature NH3-SCR Reaction: Comparison of ZnCl2, Zn(NO3)2, ZnSO4 and ZnCO3

Author:

Chen Lin12,Ren Shan1,Chen Tao1,Li Xiaodi1,Chen Zhichao1,Wang Mingming1,Liu Qingcai1,Yang Jie3

Affiliation:

1. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China

2. Bioenergy and Catalysis Laboratory, Paul Scherrer Institute (PSI), CH-5232 Villigen, Switzerland

3. College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China

Abstract

The effects of four distinct zinc species (ZnCl2, Zn(NO3)2, ZnSO4, and ZnCO3) on a Mn-Ce co-doped CuX (MCCX)catalyst were investigated and contrasted in the low-temperature NH3-SCR process. Aqueous solutions of ZnCl2, Zn(NO3)2, ZnSO4, and ZnCO3 were used to poison the catalysts. The catalytic activity of all catalysts was assessed, and their physicochemical properties were studied. There was a notable drop trend in catalytic activity in the low temperature range (200 °C) after zinc species poisoning on MCCX catalyst. Interestingly, ZnSO4 and ZnCO3 on MCCX catalyst had more serious effect on catalytic activity than Zn(NO3)2 and ZnCl2 from 150 °C to 225 °C, in which NO conversion of the MCCX-Zn-S and MCCX-Zn-C catalysts dropped about 20–30% below 200 °C compared with the fresh MCCX catalyst. The zeolite X structure was impacted by Zn species doping on the MCCX catalyst, and the Zn-poisoned catalysts had less acidic and lower redox ability than fresh Mn-Ce/CuX catalysts. Through the results of in situ DRIFTS spectroscopy experiments, all catalysts were governed by both Langmuir–Hinshelwood (L–H) and Eley–Rideal (E–R) mechanisms, and the possible mechanism for poisoning the Mn-Ce/CuX catalyst using various zinc species was revealed.

Funder

National Natural Science Foundation of China

Shanxi Provincial Innovation Capacity Support Plan

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3