Isoselective Ring-Opening Polymerization of rac-Lactide Catalyzed by Simple Potassium Amidate Complexes Containing Polycyclic Aryl Group

Author:

Gao Jiahao12,Zhang Wenjuan1,Wang Xing1,Wang Rui1,Han Mingyang2,Cao Furong12,Hao Xiang2

Affiliation:

1. Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China

2. Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Abstract

The isoselective ring-opening polymerization of rac-LA is a challenging goal. In this work, a series of potassium amidate complexes (K1–K10) were easily prepared and characterized using the 1H/13C NMR spectrum. The molecular structures of potassium complexes K2 and K10 were determined by X-ray diffraction, which showed that both were two-dimensional coordination polymers due to the adjacent π interactions of the aryl. In the presence of benzyl alcohol (BnOH), all of the potassium complexes exhibited a high catalytic activity toward the ring-opening polymerization of L-lactide and rac-LA, yielding linear polylactides capped with BnO or CH3O end groups. A significant solvent effect on the ROP of the L-LA was observed, with a superior efficiency in toluene than in THF and CH2Cl2. These complexes are iso-selective and act as active catalysts for the controlled ring-opening polymerization of rac-lactide, with a Pm from 0.54 to 0.76. This is a rare example of simple alkali metal complexes for the isoselective ROP of rac-lactide. The substituent greatly affected the monomer conversion and isoselectivities.

Funder

National Natural Science Foundation of China

Beijing Scholar Program

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3