Gas-Phase Deoxygenation of Biomass Pyrolysis Tar Catalyzed by Rare Earth Metal Loaded Hβ Zeolite

Author:

Jazie Ali A.1,Haydary Juma2ORCID,Abed Suhad A.1,Husár Jakub2

Affiliation:

1. Department of Chemical Engineering, University of Al-Qadisiyah, Al-Qadisiyah 58002, Iraq

2. Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia

Abstract

Biomass pyrolysis tar (BPT) with a higher heating value of 24.23 MJ/kg was used as raw feed for the catalytic gas-phase deoxygenation (GDO) process using Hβ zeolite loaded with different amounts of active elements (Ce, La, and Nd). Acetone molecule was chosen as a model compound to test the activity of pure Hβ zeolite, 1 wt% Ce/Hβ zeolite, 5 wt% Ce/Hβ zeolite, 1 wt% La/Hβ zeolite, 5 wt% La/Hβ zeolite, 1 wt% Nd/Hβ zeolite, and 5 wt% Nd/Hβ zeolite at 400 °C and process time of 3 h. BPT characterization showed a wide range of oxygenated compounds with the main components including water: 0.71%, furfural: 5.85%, 4-ethylguaiacol: 2.14%, phenol: 13.63%, methylethyl ketone: 5.34%, cyclohexanone: 3.23%, isopropanol: 4.78%, ethanol: 3.67%, methanol: 3.13%, acetic acid: 41.06%, and acetone: 16.46%. BPT conversion using 1 wt% Ce/Hβ zeolite catalyst showed the highest values of degree of deoxygenation (DOD) (68%) and conversion (16% for phenol, 88% for acetic acid, and 38% for 4-ethlyguaiacol). Yields of water, liquid phase, and gas phase in the GDO reaction using 1%Ce/Hβ zeolite were 18.33%, 47.42%, and 34.25%, respectively. Alkyl-substituted phenols and aromatic hydrocarbons achieved the highest yields of 37.34% and 35.56%, respectively. The main interaction pathways for BPT-GDO are also proposed.

Funder

Slovak Research and Development Agency

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hydrothermal Liquefaction of Animal By-Products Using a Chromium-Loaded Hβ Zeolite Catalyst;Springer Proceedings in Earth and Environmental Sciences;2024-07-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3