Pivotal Role of Ni/ZrO2 Phase Boundaries for Coke-Resistant Methane Dry Reforming Catalysts

Author:

Haug Leander1ORCID,Thurner Christoph1,Bekheet Maged F.2ORCID,Ploner Kevin1,Bischoff Benjamin2,Gurlo Aleksander2ORCID,Kunz Martin3,Sartory Bernhard4,Penner Simon1ORCID,Klötzer Bernhard1ORCID

Affiliation:

1. Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria

2. Faculty III Process Sciences, Institute of Materials Science and Technology, Advanced Ceramic Materials, Technische Universität Berlin, 10623 Berlin, Germany

3. Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

4. Materials Center Leoben, A-8700 Leoben, Austria

Abstract

To identify the synergistic action of differently prepared Ni-ZrO2 phase boundaries in methane dry reforming, we compared an “inverse” near-surface intermetallic NiZr catalyst precursor with the respective bulk-intermetallic NixZry material and a supported Ni-ZrO2 catalyst. In all three cases, stable and high methane dry reforming activity with enhanced anticoking properties can be assigned to the presence of extended Ni-ZrO2 phase boundaries, which result from in situ activation of the intermetallic Ni-Zr model catalyst systems under DRM conditions. All three catalysts operate bifunctionally; methane is essentially decomposed to carbon at the metallic Ni0 surface sites, whereas CO2 reacts to CO at reduced Zr centers induced by a spillover of carbon to the phase boundaries. On pure bulk Ni0, dissolved carbon accumulates in surface-near regions, leading to a sufficiently supersaturated state for completely surface-blocking graphitic carbon segregation. In strong contrast, surface-ZrO2 modified bulk Ni0 exhibits virtually the best decoking and carbon conversion conditions due to the presence of highly dispersed ZrO2 islands with a particularly large contribution of interfacial Ni0-ZrO2 sites and short C-diffusion pathways to the latter.

Funder

The Austrian Promotion Agency

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3