Bayesian Optimization for an ATP-Regenerating In Vitro Enzyme Cascade

Author:

Siedentop Regine1ORCID,Siska Maximilian2ORCID,Möller Niklas1,Lanzrath Hannah2ORCID,von Lieres Eric2ORCID,Lütz Stephan1ORCID,Rosenthal Katrin13ORCID

Affiliation:

1. Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany

2. Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-1: Biotechnology, 52428 Jülich, Germany

3. School of Science, Constructor University, 28759 Bremen, Germany

Abstract

Enzyme cascades are an emerging synthetic tool for the synthesis of various molecules, combining the advantages of biocatalysis and of one-pot multi-step reactions. However, the more complex the enzyme cascade is, the more difficult it is to achieve adequate productivities and product concentrations. Therefore, the whole process must be optimized to account for synergistic effects. One way to deal with this challenge involves data-driven models in combination with experimental validation. Here, Bayesian optimization was applied to an ATP-producing and -regenerating enzyme cascade consisting of polyphosphate kinases. The enzyme and co-substrate concentrations were adjusted for an ATP-dependent reaction, catalyzed by mevalonate kinase (MVK). With a total of 16 experiments, we were able to iteratively optimize the initial concentrations of the components used in the one-pot synthesis to improve the specific activity of MVK with 10.2 U mg−1. The specific activity even exceeded the results of the reference reaction with stoichiometrically added ATP amounts, with which a specific activity of 8.8 U mg−1 was reached. At the same time, the product concentrations were also improved so that complete yields were achieved.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3