Vertical Growth of WO3 Nanosheets on TiO2 Nanoribbons as 2D/1D Heterojunction Photocatalysts with Improved Photocatalytic Performance under Visible Light

Author:

Wang Ling1,Xu Keyi1,Tang Hongwang2,Zhu Lianwen2ORCID

Affiliation:

1. College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China

2. School of Biology and Chemical Engineering, Jiaxing University, Jiaxing 314001, China

Abstract

We report the construction of 2D/1D heterojunction photocatalysts through the hydrothermal growth of WO3 nanosheets on TiO2 nanoribbons for the first time. Two-dimensional WO3 nanosheets were vertically arrayed on the surface of TiO2 nanoribbons, and the growth density could be simply controlled by adjusting the concentration of the precursors. The construction of WO3/TiO2 heterojunctions not only decreases the band gap energy of TiO2 from 3.12 to 2.30 eV and broadens the photoresponse range from the UV region to the visible light region but also significantly reduces electron–hole pair recombination and enhances photo-generated carrier separation. Consequently, WO3/TiO2 heterostructures exhibit improved photocatalytic activity compared to pure WO3 nanosheets and TiO2 nanoribbons upon visible light irradiation. WO3/TiO2-25 possesses the highest photocatalytic activity and can remove 92.8% of RhB pollutants in 120 min. Both further increase and decrease in the growth density of WO3 nanosheets result in an obvious reduction in photocatalytic activity. The kinetic studies confirmed that the photocatalytic degradation of RhB follows the kinetics of the pseudo-first-order model. The present study demonstrates that the prepared WO3/TiO2 2D/1D heterostructures are promising materials for photocatalytic removal of organic pollutants to produce clean water.

Funder

Jiaxing City Public Welfare Research Project of China

Innovation Jiaxing Excellent Talents Support Program

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Reference56 articles.

1. Urban growth, climate change, and freshwater availability;McDonald;Proc. Natl. Acad. Sci. USA,2011

2. Global hydrological cycles and world water resources;Oki;Science,2006

3. Global threats to human water security and river biodiversity;McIntyre;Nature,2010

4. Drinking Water in Developing Countries;Gadgil;Annu. Rev. Energy Environ.,1998

5. (2023, January 12). Water Scarcity Threats. Available online: https://www.worldwildlife.org/threats/water-scarcity.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3