Construction of Supported MnOx/MgAl Hydrotalcite Catalysts and Their Highly Efficient Catalytic Performance for Low-Temperature Formaldehyde Removal

Author:

Yu Xiankun1,Sun Qi2,Tian Jingchen2,Wan Jie2ORCID,Liu Yanjun2,Wang Xiaoli2,Kan Jianfei2,Yang Xiaojun1,Wu Gongde2

Affiliation:

1. Sinosteel Maanshan General Institute of Mining Research Co., Ltd., Ma’anshan 243000, China

2. Energy Research Institute, Nanjing Institute of Technology, Nanjing 211167, China

Abstract

A series of supported MnOx/MgAl-layered double hydroxide (LDH) catalysts were prepared by hydrothermal co-precipitation to investigate their catalytic performances for low-temperature formaldehyde oxidation reactions. Activity tests show that the 10Mn/Mg3Al1-LDH catalyst exhibits higher efficiency for low-temperature formaldehyde oxidation with a high CO2 yield. It also shows remarkable long-term operational stability as well as good adaptability to different velocities and humidities. Various characterizations were carried out to establish the possible structure–activity correlations. The results show that there were a large number of hydroxyl groups in the 10Mn/MgAl-LDH catalysts, and the hydroxyl groups were positively correlated with Mg2+ content. The outstanding catalytic performance of 10Mn/Mg3Al1-LDH can be attributed to abundant surface hydroxyl groups, surface adsorbed oxygen and higher Mn4+/Mn3+ ratios. Through in situ Fourier-transform infrared spectroscopy (in situ FTIR), it was revealed that formaldehyde was gradually converted into CO2 and water with dioxymethylene (DOM), formate and carbonate as the major intermediates under the action of both active oxygen and active hydroxyl groups. The active oxygen and active hydroxyl groups consumed in the process are continuously replenished by the effective reaction between the oxygen molecules in the air and the active site of the catalyst. The low-temperature asynchronous conversion of formaldehyde results in the accumulation of some intermediates on the catalyst surface covering the active center, which induces catalyst deactivation.

Funder

Jiangsu Province Science and Technology Plan Special Fund

Key Research and Development Program of Anhui Province

Natural Science Foundation of Jiangsu Province

Jiangsu Industry-University-Research Cooperation Project

Scientific Research Fund of Nanjing Institute of Technology

Students’ Science and Technology Innovation Fund of Nanjing Institute of Technology

Provincial key project of Innovation and Entrepreneurship Training Program for College Students in Jiangsu Province

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3