Highly Efficient Catalytic Reduction of Nitrobenzene Using Cu@C Based on a Novel Cu–MOF Precursor

Author:

Tang Jinsheng1,Zhang Suoshu1,Chen Xue1,Zhang Linlin1,Du Lin1,Zhao Qihua1

Affiliation:

1. Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan Characteristic Plant Extraction Laboratory, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650500, China

Abstract

Currently, the catalytic reduction of nitrobenzene requires more efficient and low-cost catalysts. In this work, a new copper-based metal-organic framework (MOF) was designed by the calcination of Cu–MOF at 700 °C (denoted as Cu@C). The catalyst showed superior catalytic performance toward the reduction of nitrobenzene, using sodium borohydride (NaBH4) as the reducing agent, and the catalyst exhibited high nitrobenzene conversion (100%) and a quick reaction time (8 min). This was one of the highest efficiencies among non-noble metal catalysts reported so far, as general non-noble metal catalysts typically require more than 15 min. This catalyst had excellent acid resistance after etching using sulfuric acid (H2SO4) for 24 h with a nitrobenzene conversion rate that was still more than 90%. In addition, it could be used more than five times and the catalytic properties remained essentially unchanged, without any reactivation treatment. Therefore, this study could offer a new efficient non-noble metal catalyst for the reduction of nitro compounds.

Funder

Natural Science Foundation of China

Ten Thousand Talent Plans for Young Top-notch Talents of Yunnan Provence

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3