Abstract
The Au@CdS nanocomposites have been synthesized using a combination of wet chemical and hydrothermal approaches at lower reaction temperatures. The concentrations of CdS precursors and reaction temperature can be essential in influencing photocatalytic water splitting under blue-LED light excitation. The optimized Au@CdS nanocomposites (5 mM CdS precursors and 100 °C) exhibited the highest hydrogen evolution rate of 1.041 mmolh−1 g−1, which is 175.3 times higher than CdS nanoparticles for de-ionized water under blue-LED light excitation. This result is ascribed to separate photogenerated charge carriers and increased light absorption by the Au core. The Au@CdS nanocomposites (1.204 mmolh−1 g−1) revealed significant applications in photocatalytic tap water splitting under blue-LED light excitation, which is 512.3 times higher than CdS nanoparticles. In addition, reusability experiments demonstrate that Au@CdS nanocomposites exhibit excellent stability for the long-term photocatalytic tap water splitting process. Furthermore, this research shows that Au nanoparticles decorated with CdS shells effectively achieve high-efficiency conversion from light to hydrogen energy.
Funder
Ministry of Science and Technology of Taiwan
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献