Exceptional Photocatalytic Performance of the LaFeO3/g-C3N4 Z-Scheme Heterojunction for Water Splitting and Organic Dyes Degradation

Author:

Humayun Muhammad1ORCID,Bahadur Ayesha2,Khan Abbas13ORCID,Bououdina Mohamed1ORCID

Affiliation:

1. Department of Mathematics and Sciences, College of Humanities and Sciences, Energy, Water, and Environment Lab, Prince Sultan University, Riyadh 11586, Saudi Arabia

2. Department of Chemistry, Bacha Khan University Charsadda, Charsadda 24420, Pakistan

3. Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan

Abstract

To simulate natural photosynthesis, scientists have developed an artificial Z-scheme system that splits water into hydrogen and oxygen using two different semiconductors. Researchers are striving to improve the performance of Z-scheme systems by improving light absorption, developing redox couples with high stability, and finding new cocatalysts. Here, we report the synthesis and utilization of LaFeO3/g-C3N4 as a Z-scheme system for water reduction to produce hydrogen and organic dye degradation under visible light irradiation. The as-fabricated photocatalyst revealed exceptional activity for H2 production (i.e., 351 µmol h−1g−1), which is 14.6 times higher compared to that of the single-component g-C3N4 (i.e., 24 µmol h−1g−1). In addition, the composite photocatalyst degraded 87% of Methylene Blue (MB) and 94% of Rhodamine B (RhB) in 2 h. Various experimental analyses confirmed that the exceptional performance of the LaFeO3/g-C3N4 Z-scheme catalyst is due to remarkably enhanced charge carrier separation and improved light absorption. The development of this highly effective Z-scheme heterostructure photocatalyst will pave the way for the sustainable development of newly designed Z-scheme scheme systems that will tackle energy and environmental crises.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3