The Reaction Mechanism of the Cu(I) Catalyzed Alkylation of Heterosubstituted Alkynes

Author:

Silva Pedro J.ORCID

Abstract

Alkynes may be regioselectively alkylated to alkenes by organocopper reagents in a reaction known as “carbocupration”, where an alkylCu(I) binds to the alkyne and transfers its organic moiety to one of the alkyne carbon atoms. Alkynes hetero-substituted with third-row elements yield alkenes with a regiochemistry opposite to that obtained when using alkynes hetero-substituted with second-row elements. Early computational investigations of his reaction mechanism have identified the importance of the organocopper counter-cation (Li+) to the achievement of good reaction rates, but in the subsequent two decades no further progress has been reported regarding the exploration of the mechanism or the explanation of the experimental regiochemistry. In this work, density-functional theory is used to investigate the mechanism used and to describe a model that correctly explains both the reaction rates at sub-zero temperatures and the regiochemistry profiles obtained with each of the heteroalkynes. The rate-determining step is shown to vary depending on the heterosubstituent, and the alkyl transfer is consistently shown to occur, somewhat counter-intuitively, to the alkyne carbon that is complexed by Cu rather than to the “free” alkyne carbon atom, which instead interacts with the counter-cation that stabilizes the developing electronic charge distribution.

Funder

FEDER

Portuguese Funds

FCT

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3