Research Progress on Metal Oxides for the Selective Catalytic Reduction of NOx with Ammonia

Author:

Wang Lanyi1,Zhou Shengran1,You Mengxia2,Yu Di2,Zhang Chunlei1,Gao Siyu1,Yu Xuehua1ORCID,Zhao Zhen12

Affiliation:

1. Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China

2. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, 18# Fuxue Road, Beijing 102249, China

Abstract

Nitrogen oxides emitted from diesel vehicle exhaust seriously endanger the atmospheric environment and human health, which have attracted people’s attention. Among numerous nitrogen oxide (NOx) removal technologies, photocatalytic removal of NOx and SCR have received widespread attention. The photocatalytic treatment of NOx technology is a good choice due to its mild reaction conditions and low costs. Moreover, NH3-SCR has been widely used in denitration technology and plays an important role in controlling NOx emissions. In NH3-SCR technology, the development of high-efficiency catalysts is an important part. This paper summarizes the research progress of metal oxide catalysts for NH3-SCR reactions, including V-based catalysts, Mn-based catalysts, Fe-based catalysts, Ce-based catalysts, and Cu-based catalysts. Meanwhile, the detailed process of the NH3-SCR reaction was also introduced. In addition, this paper also describes a possible SO2 poisoning mechanism and the stability of the catalysts. Finally, the problems and prospects of metal oxide catalysts for NOx removal were also proposed.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Liaoning Provincial Central Government Guides Local Science and Technology Development Funds

Excellent Youth Science Foundation of Liaoning Province

Shenyang Science and Technology Planning Project

University Joint Education Project for China-Central and Eastern European Countries

Major/Key Project of Graduate Education and Teaching Reform of Shenyang Normal University

University level innovation team of Shenyang Normal University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3