A Novel ZnO/Co3O4 Nanoparticle for Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation

Author:

Tien Tsung-Mo1ORCID,Chen Edward L.1ORCID

Affiliation:

1. College of Hydrosphere Science & Coastal Water and Environment Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan

Abstract

In recent years, ZnO/Co3O4 nanoparticles (NPs) have been reflected as typical of the most promising photocatalysts utilized in the field of photocatalysis for potentially solving energy shortages and environmental remediation. In this work, a novel ZnO/Co3O4 NP photocatalyst was fabricated and utilized for photocatalytic hydrogen evolution with visible light activity. ZnO/Co3O4 NPs display an improved photocatalytic hydrogen production rate of 3963 μmol/g through a five-hour test under visible light activity. This is much better than their single components. Hence, bare ZnO NPs loaded with 20 wt% Co3O4 NPs present optimum efficiency of hydrogen evolution (793.2 μmol/g/h) with 10 vol% triethanolamine (TEOA), which is 11.8 times that of pristine ZnO NPs. An achievable mechanism for improved photocatalysis is endowed in terms of the composite that promotes the operative separation rate of charge carriers that are produced by visible light irradiation. This study yields a potential process for the future, proposing economical, high-function nanocomposites for hydrogen evolution with visible light activity.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3