Boosting Catalytic Combustion of Ethanol by Tuning Morphologies and Exposed Crystal Facets of α-Mn2O3

Author:

Liu Wangwang1,Men Yong12,Ji Fei1,Shi Feng1,Wang Jinguo1,Liu Shuang1,Magkoev Tamerlan T.3ORCID,An Wei1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

2. Mechanical Industrial Key Laboratory of Boiler Low-Carbon Technology, Shanghai University of Engineering Science, Shanghai 201620, China

3. Laboratory of Surface Physics and Catalysis, Department of Condensed Matter Physics, North Ossetian State University, Vatutina 44-46, Vladikavkaz 362025, Russia

Abstract

Three types of α-Mn2O3 catalysts with different well-defined morphologies (cubic, truncated octahedra and octahedra) and exposed crystal facets have been successfully prepared via hydrothermal processes, and evaluated for ethanol total oxidation with low ethanol concentration at low temperatures. The α-Mn2O3-cubic catalyst shows a superior catalytic reaction rate than that of α-Mn2O3-truncated octahedra and α-Mn2O3-octahedra under high space velocity of 192,000 mL/(g·h). Based on the characterization results obtained from XRD, BET, FE-SEM, HR-TEM, FT-IR, H2-TPR, XPS, ethanol-TPD, and CO-TPSR techniques, the observed morphology-dependent reactivity of α-Mn2O3 catalysts can be correlated to the good low-temperature reducibility, abundant surface Mn4+ and adsorbed reactive oxygen species, which was originated from the exposed (001) crystal planes. Through tuning the morphology and exposed (001) crystal facet of α-Mn2O3, a highly active ethanol oxidation catalyst with high selectivity and excellent stability is obtained. The developed approach may be applied broadly to the development of the design principles for high-performance low-cost and environmentally friendly Mn-based oxidation catalysts.

Funder

National Natural Science Foundation of China

Class III Peak Discipline of Shanghai—Materials Science and Engineering

Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3