Tuning the Structure and Acidity of Pt/Hierarchical SSZ-32 Catalysts to Boost the Selective Hydroisomerization of n-Hexadecane

Author:

Yang Xinyue12,Zhao Wenli12,Liu Linlin12,Niu Xiaopo12,Wang Qingfa123

Affiliation:

1. Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

2. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China

3. Zhejiang Institute of Tianjin University, Ningbo 315201, China

Abstract

Developing highly selective and efficient bifunctional catalysts is an important issue for the hydroisomerization of long-chain n-alkanes. It is vital to tailor the balance of isomerization and cracking reactions in hydroisomerization. Herein, a bifunctional Pt/hierarchical SSZ-32 catalyst was fabricated with a sequential desilication–dealumination treatment to boost the selective hydroisomerization of n-hexadecane (C16). The pore structure and acid sites of SSZ-32 zeolite were tailored. More mesopore and Brønsted acid sites were generated, and the ratio of weak to strong Brønsted acidity (Bw/Bs) was increased by the sequential desilication–dealumination. The generated hierarchical structure had little effect on the selectivity of the reaction pathways of hydroisomerization versus cracking. The ratio of isomers/cracking products increased almost linearly with the increase in the Bw/Bs ratios. Meanwhile, the synergetic effect of the hierarchical structure and acidity regulation promoted the selectivity of monobranched i-C16 products. Therefore, the resulting Pt/SSZ-0.6AS exhibited the highest activity with a total isomer yield of 71.5% at 255 °C and the enhanced formation mechanism of monobranched isomers occurred via the pore mouth.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3