Dual-MOFs-Derived Fe and Mn Species Anchored on Bamboo-like Carbon Nanotubes for Efficient Oxygen Reduction as Electrocatalysts

Author:

Situ Ailan1,Zhao Tianyou1,Huang Yuetong1,Li Pingzhen1,Yang Lingui1,Zhang Zehong1,Wang Zhaochen1,Ou Yongsheng1,Guan Xiongcong1,Wen Jinxiu12,Zhang Jiong3,Zhan Yunfeng12ORCID,Tang Xiufeng12

Affiliation:

1. School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China

2. Research Center of Flexible Sensing Materials and Devices, Wuyi University, Jiangmen 529020, China

3. School of Civil Engineering and Architecture, Wuyi University, Jiangmen 529020, China

Abstract

The development of efficient non-precious metal electrocatalysts for oxygen reduction reaction (ORR) to replace Pt-based methods is crucial for the applications of fuel cells and metal–air batteries. In this study, a bimetallic M-N-C catalyst with highly dispersed dual-atom Fe/Mn-Nx sites immobilized on N-doped bamboo-like carbon nanotubes is prepared by the ball-milling and calcination of dual-MOFs as precursors. The rich N-doping and abundant M–Nx species contribute to the excellent intrinsic ORR activity of the catalyst, and the unique bamboo-like nanotubes morphology is beneficial for facilitating electron transfer and mass transport while simultaneously enabling the exposure of active sites. As expected, the optimized Z-Fe1Mn1-NC catalyst exhibits efficient ORR activity with a half-wave potential (E1/2) of 0.80 V in acid and 0.82 V in alkaline, and a higher electrochemical stability with the current density maintained at 91% (in 0.1 M KOH) and 86% (0.1 M HClO4) of its initial current density after 15 h of a chronoamperometric test at a high potential of 0.7 V. When further applied to Zn–air batteries, the catalyst also delivers a high open-circuit voltage, large power density, and outstanding rate performance. This work provides a novel means of designing dual metal M–Nx site-based M-N-C catalysts for ORR sustainable energy applications.

Funder

National Natural Science Foundation of China

Guangdong Basis and Applied Fundamental Research Fund

Innovation and Strong School Engineering Fund of Guangdong Province

Wuyi University-HKMAO Joint Research and Development Fund

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3