The Role of Undecenoic Acid on the Preparation of Decorated MCM-41/Polyethylene Hybrids by In Situ Polymerization: Catalytic Aspects and Properties of the Resultant Materials

Author:

Cerrada María L.1ORCID,Bento Artur2,Pérez Ernesto1,Lourenço João P.23ORCID,Ribeiro M. Rosário2ORCID

Affiliation:

1. Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain

2. Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

3. Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal

Abstract

Functionalized polyethylene-based nanocomposites were prepared by in situ polymerization of ethylene with modified or neat MCM-41 nanoparticles (NMCM-41). Two different synthetic approaches were investigated to improve the compatibility between the hydrophobic HDPE matrix and the hydrophilic NMCM-41: (i) incorporation of UA into the polymeric matrix by copolymerization with ethylene, promoted by the zirconocene catalyst under homogeneous conditions, in the presence of pristine NMCM-41; (ii) use of undecenoic acid (UA) as an interfacial agent to obtain decorated NMCM-41 to be used as nanofiller for the in situ ethylene polymerization, catalyzed by Cp2ZrCl2/MAO under supported conditions. The strong polar character of the carboxylic group is expected to either increase the hydrophilicity of the HDPE chains (strategy i) or interact with the NMCM-41 surface and provide an additional link to the polymeric chains via copolymerization of the vinyl group under supported conditions (strategy ii). Although metallocene catalysts have been shown to copolymerize olefins with functional monomers, the presence of oxygen-containing compounds in the reaction media strongly affects the polymerization activity as a result of the interaction of functional groups with the electrophilic active center of the catalyst. Thus, UA was pre-contacted with tri(isobutyl)aluminum (TIBA) prior to its use in the polymerization to reduce the deactivating character of the carboxylic acid groups towards the zirconocene catalyst. The influence of the UA presence on the polymerization behavior of the protection step is discussed, and the polymerization activities observed for the different approaches are compared. In addition, the thermal behavior and structural details of the resulting materials have been characterized. The impact of using neat or functionalized NMCM-41 on the final dispersion within the polymeric matrix is also analyzed, which is correlated with the mechanical performance exhibited by these HDPE_UA_NMCM-41 nanocomposites.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3