Rapid Determination of Low Heavy Metal Concentrations in Grassland Soils around Mining Using Vis–NIR Spectroscopy: A Case Study of Inner Mongolia, China

Author:

Han Aru,Lu Xiaoling,Qing Song,Bao Yongbin,Bao Yuhai,Ma Qing,Liu Xingpeng,Zhang JiquanORCID

Abstract

Proximal sensing offers a novel means for determination of the heavy metal concentration in soil, facilitating low cost and rapid analysis over large areas. In this respect, spectral data and model variables play an important role. Thus far, no attempts have been made to estimate soil heavy metal content using continuum-removal (CR), different preprocessing and statistical methods, and different modeling variables. Considering the adsorption and retention of heavy metals in spectrally active constituents in soil, this study proposes a method for determining low heavy metal concentrations in soil using spectral bands associated with soil organic matter (SOM) and visible–near-infrared (Vis–NIR). To rapidly determine the concentration of heavy metals using hyperspectral data, partial least squares regression (PLSR), principal component regression (PCR), and support vector machine regression (SVMR) statistical methods and 16 preprocessing combinations were developed and explored to determine an optimal combination. The results showed that the multiplicative scatter correction and standard normal variate preprocessing methods evaluated with the second derivative spectral transformation method could accurately determine soil Cr and Ni concentrations. The root-mean-square error (RMSE) values of Vis–NIR model combinations with PLSR, PCR, and SVMR were 0.34, 3.42, and 2.15 for Cr, and 0.07, 1.78, and 1.14 for Ni, respectively. Soil Cr and Ni showed strong spectral responses to the Vis–NIR spectral band. The R2 value of the Vis–NIR-based PLSR model was higher than 0.99, and the RMSE value was 0.07–0.34, suggesting higher stability and accuracy. The results were more accurate for Ni than Cr, and PLSR showed the best performance, followed by SVMR and PCR. This perspective has critical implications for guiding quantitative biogeochemical analysis using proximal sensing data.

Funder

Jilin Scientific and Technological Development Program

Department of Science and Technology of Jilin Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3