Cardiovascular Damage in COVID-19: Therapeutic Approaches Targeting the Renin-Angiotensin-Aldosterone System

Author:

Lumpuy-Castillo JairoORCID,Lorenzo-Almorós AnaORCID,Pello-Lázaro Ana MaríaORCID,Sánchez-Ferrer Carlos,Egido Jesús,Tuñón JoséORCID,Peiró Concepción,Lorenzo ÓscarORCID

Abstract

Coronavirus disease 2019 (COVID-19) is usually more severe and associated with worst outcomes in individuals with pre-existing cardiovascular pathologies, including hypertension or atherothrombosis. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can differentially infect multiple tissues (i.e., lung, vessel, heart, liver) in different stages of disease, and in an age- and sex-dependent manner. In particular, cardiovascular (CV) cells (e.g., endothelial cells, cardiomyocytes) could be directly infected and indirectly disturbed by systemic alterations, leading to hyperinflammatory, apoptotic, thrombotic, and vasoconstrictive responses. Until now, hundreds of clinical trials are testing antivirals and immunomodulators to decrease SARS-CoV-2 infection or related systemic anomalies. However, new therapies targeting the CV system might reduce the severity and lethality of disease. In this line, activation of the non-canonical pathway of the renin-angiotensin-aldosterone system (RAAS) could improve CV homeostasis under COVID-19. In particular, treatments with angiotensin-converting enzyme inhibitors (ACEi) and angiotensin-receptor blockers (ARB) may help to reduce hyperinflammation and viral propagation, while infusion of soluble ACE2 may trap plasma viral particles and increase cardioprotective Ang-(1–9) and Ang-(1–7) peptides. The association of specific ACE2 polymorphisms with increased susceptibility of infection and related CV pathologies suggests potential genetic therapies. Moreover, specific agonists of Ang-(1–7) receptor could counter-regulate the hypertensive, hyperinflammatory, and hypercoagulable responses. Interestingly, sex hormones could also regulate all these RAAS components. Therefore, while waiting for an efficient vaccine, we suggest further investigations on the non-canonical RAAS pathway to reduce cardiovascular damage and mortality in COVID-19 patients.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3