p-Cresol Sulfate Caused Behavior Disorders and Neurodegeneration in Mice with Unilateral Nephrectomy Involving Oxidative Stress and Neuroinflammation

Author:

Sun Chiao-Yin,Li Jian-Ri,Wang Ya-Yu,Lin Shih-YiORCID,Ou Yen-Chuan,Lin Cheng-Jui,Wang Jiaan-DerORCID,Liao Su-Lan,Chen Chun-Jung

Abstract

Protein-bound uremic toxins, such as p-cresol sulfate (PCS), can be accumulated with declined renal function and aging and is closely linked with central nervous system (CNS) diseases. In the periphery, PCS has effects on oxidative stress and inflammation. Since oxidative stress and inflammation have substantial roles in the pathogenesis of neurological disorders, the CNS effects of PCS were investigated in unilateral nephrectomized C57/BL/6 mice. Unlike intact mice, unilateral nephrectomized mice showed increased circulating levels of PCS after exogenous administration. Upon PCS exposure, the unilateral nephrectomized mice developed depression-like, anxiety-like, and cognitive impairment behaviors with brain PCS accumulation in comparison with the nephrectomy-only group. In the prefrontal cortical tissues, neuronal cell survival and neurogenesis were impaired along with increased apoptosis, oxidative stress, and neuroinflammation. Circulating brain-derived neurotrophic factors (BDNF) and serotonin were decreased in association with increased corticosterone and repressor element-1 silencing transcription factor (REST), regulators involved in neurological disorders. On the contrary, these PCS-induced changes were alleviated by uremic toxin absorbent AST-120. Taken together, PCS administration in mice with nephrectomy contributed to neurological disorders with increased oxidative stress and neuroinflammation, which were alleviated by PCS chelation. It is suggested that PCS may be a therapeutic target for chronic kidney disease-associated CNS diseases.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3