Influence of Hydroxyapatite Surface Functionalization on Thermal and Biological Properties of Poly(l-Lactide)- and Poly(l-Lactide-co-Glycolide)-Based Composites

Author:

Gazińska MałgorzataORCID,Krokos Anna,Kobielarz Magdalena,Włodarczyk Marcin,Skibińska Paulina,Stępak BoguszORCID,Antończak Arkadiusz,Morawiak Milena,Płociński Przemysław,Rudnicka KarolinaORCID

Abstract

Novel biocomposites of poly(L-lactide) (PLLA) and poly(l-lactide-co-glycolide) (PLLGA) with 10 wt.% of surface-modified hydroxyapatite particles, designed for applications in bone tissue engineering, are presented in this paper. The surface of hydroxyapatite (HAP) was modified with polyethylene glycol by using l-lysine as a linker molecule. The modification strategy fulfilled two important goals: improvement of the adhesion between the HAP surface and PLLA and PLLGA matrices, and enhancement of the osteological bioactivity of the composites. The surface modifications of HAP were confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), TGA, and elemental composition analysis. The influence of hydroxyapatite surface functionalization on the thermal and in vitro biological properties of PLLA- and PLLGA-based composites was investigated. Due to HAP modification with polyethylene glycol, the glass transition temperature of PLLA was reduced by about 24.5 °C, and melt and cold crystallization abilities were significantly improved. These achievements were scored based on respective shifting of onset of melt and cold crystallization temperatures and 1.6 times higher melt crystallization enthalpy compared with neat PLLA. The results showed that the surface-modified HAP particles were multifunctional and can act as nucleating agents, plasticizers, and bioactive moieties. Moreover, due to the presented surface modification of HAP, the crystallinity degree of PLLA and PLLGA and the polymorphic form of PLLA, the most important factors affecting mechanical properties and degradation behaviors, can be controlled.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3