Abstract
Catanionic vesicles are emerging interesting structures for bioapplications. They self-generate by a pairing of oppositely charged ionic surfactants that assemble into hollow structures. Specifically, the anionic-cationic surfactant pair assumes a double-tailed zwitterionic behavior. In this work, the multilamellar-to-unilamellar thermal transition of several mixed aqueous systems, with a slight excess of the anionic one, were investigated. Interestingly, it was found that the anionic counterion underwent a dissociation as a consequence of a temperature increase, leading to the mentioned thermal transition. The present work proposed the spectroscopic techniques, specifically multinuclear NMR and PGSTE (pulsed gradient stimulated echo), as a key tool to study such systems, with high accuracy and effectiveness, while requiring a small amount of the sample. The results presented herein evidence encouraging perspectives, forecasting the application of the studied vesicular nanoreservoirs, for e.g., drug delivery.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献