Abstract
Sequence-defined recombinant antibodies (rAbs) have emerged as alternatives to hybridoma-secreted monoclonal antibodies (mAbs) for performing immunoassays. However, the polyploidy nature of hybridomas often leads to the coexistence of aberrant or non-specific functional variable region (VR) gene transcripts, which complicates the identification of correct VR sequences. Herein, we introduced the use of LC-MS/MS combined with next-generation sequencing to characterize VR sequences in an anti-thiacloprid mAb, which was produced by a hybridoma with genetic antibody diversity. The certainty of VR sequences was verified by the functional analysis based on the recombinant antibody (rAb) expressed by HEK293 mammalian cells. The performance of the rAb was similar to that of the parental mAb, with IC50 values of 0.73 and 0.46 μg/L as measured by ELISAs. Moreover, molecular docking analysis revealed that Ser52 (H-CDR2), Trp98, and Trp93 (L-CDR3) residues in the complementarity determining regions (CDRs) of the identified VR sequences predominantly contributed to thiacloprid-specific recognition through hydrogen bonds and the CH–π interaction. Through single-site-directed alanine mutagenesis, we found that Trp98 and Trp93 (L-CDR3) showed high affinity to thiacloprid, while Ser52 (H-CDR2) had an auxiliary effect on the specific binding. This study presents an efficient and reliable way to determine the key recognition sites of hapten-specific mAbs, facilitating the improvement of antibody properties.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis