Methrotexate Treatment Inmunomodulates Abnormal Cytokine Expression by T CD4 Lymphocytes Present in DMARD-Naïve Rheumatoid Arthritis Patients

Author:

Monserrat Sanz JorgeORCID,Bohórquez Cristina,Gómez Ana MariaORCID,Movasat Atusa,Pérez Ana,Ruíz Lucía,Diaz David,Sánchez Ana Isabel,Albarrán Fernando,Sanz Ignacio,Álvarez-Mon Melchor

Abstract

CD4+T-lymphocytes are relevant in the pathogenesis of rheumatoid arthritis (RA), however, their potential involvement in early RA remains elusive. Methotrexate (MTX) is a commonly used disease-modifying antirheumatic drug (DMARD), but its mechanism has not been fully established. In 47 new-onset DMARD-naïve RA patients, we investigated the pattern of IFNγ, IL-4 and IL-17A expression by naïve (TN), central (TCM), effector memory (TEM) and effector (TE) CD4+ subsets; their STAT-1, STAT-6 and STAT-3 transcription factors phosphorylation, and the circulating levels of IFNγ, IL-4 and IL-17. We also studied the RA patients after 3 and 6 months of MTX treatment and according their clinical response. CD4+T-lymphocyte subsets and cytokine expression were measured using flow cytometry. New-onset DMARD-naïve RA patients showed a significant expansion of IL-17A+, IFNγ+ and IL-17A+IFNγ+ CD4+T-lymphocyte subsets and increased intracellular STAT-1 and STAT-3 phosphorylation. Under basal conditions, nonresponder patients showed increased numbers of circulating IL-17A producing TN and TMC CD4+T-lymphocytes and IFNγ producing TN, TCM, TEM CD4+T-lymphocytes with respect to responders. After 6 months, the numbers of CD4+IL-17A+TN remained significantly increased in nonresponders. In conclusion, CD4+T-lymphocytes in new-onset DMARD-naïve RA patients show IL-17A and IFNγ abnormalities in TN, indicating their relevant role in early disease pathogenesis. Different patterns of CD4+ modulation are identified in MTX responders and nonresponders.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3