The Effect of Acidity Coefficient on the Crystallization Properties and Viscosity of Modified Blast Furnace Slag for Mineral Wool Production

Author:

Tian Tielei,Jin Xinyu,Zhang Yuzhu,Long Yue,Kou Xinlin,Yang Jiayi

Abstract

The crystallization and viscosity of modified blast furnace slag are key factors in fiber forming conditions. In this paper, the crystallization behavior of modified blast furnace slag under continuous cooling conditions was studied by differential scanning calorimetry, and its crystallization kinetics with different acidity coefficients were established. On this basis, the evolution law of the crystallization phase and the influence of crystallization on the viscosity of modified blast furnace slag with different acidity coefficients were analyzed. The results indicated that the crystallization phases of slag with acidity coefficients of 1.05 and 1.20 were, respectively, Melilite and Anorthite. During the cooling process at the acidity coefficient of 1.05, the critical rates of precipitation of Melilite and Anorthite were 50 °C/s and 20 °C/s, respectively, while they were 20 °C/s and 15 °C/s, respectively, at the acidity coefficient of 1.20. With the increase of the acidity coefficient, the crystal growth mode of slag changed from two-dimensional and three-dimensional mixed crystallization to surface nucleation and one-dimensional crystallization. The crystallization activation energy of slag with acidity coefficients of 1.05 and 1.20 were 698.14 kJ/mol and 1292.50 kJ/mol, respectively. In addition, the change trend of viscosity was related to crystal size and content.

Funder

the National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3