Experimental and Numerical Analyses of Stud Shear Connectors in Steel–SFRCC Composite Beams

Author:

Peng Kai,Liu Laijun,Wu Fangwen,Wang Ruizheng,Lei Song,Zhang Xiaoyu

Abstract

To investigate the shear performance and failure mechanism of stud shear connectors in steel fiber-reinforced cementitious composite (SFRCC) beams, six steel-SFRCC and six steel-normal strength concrete (NC) push-out specimens with two heights (80 mm, 120 mm) and three diameters (14 mm, 18 mm, 22 mm) of stud connectors were prepared. The experimental results revealed that the stud shearing failure was the main failure mode of all push-out specimens. In comparison to the steel-NC specimens, the development of cracks in the SFRCC beams was efficiently restrained due to the existence of high-strength steel fibers added to the normal concrete. The shear resistance and stiffness of studs in the steel-SFRCC beams were, respectively, 22.3% and 15.1% greater than those in the steel-NC specimens; however, their ductility was reduced, and the stud shear connectors failed in advance. The finite element (FE) model was developed and verified by push-out test results. FE analysis results indicated that the shear resistance of stud shear connectors was significantly improved with the increase in the concrete compressive strength, the stud diameter and tensile strength, whereas the aspect ratio of studs had a small impact on the ultimate resistance of stud shear connectors. Based on the as-obtained push-out experiment and FE analysis results, empirical formulas were presented to predict the load-slip curves and ultimate shear resistance of stud shear connectors in the steel-SFRCC specimens, and higher accuracy and a wider application range were obtained than with previous formulas.

Funder

the Natural Science Basic Research Program of Shaanxi

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3