Proposal for Some Affordable Laboratory Biofilm Reactors and Their Critical Evaluations from Practical Viewpoints

Author:

Kudara Hikonaru,Kanematsu Hideyuki,Barry Dana M.ORCID,Ogawa AkikoORCID,Kogo TakeshiORCID,Miura Hidekazu,Kawai RisaORCID,Hirai NobumitsuORCID,Kato TakehitoORCID,Yoshitake MichikoORCID

Abstract

Biofilms are a result of bacterial activities and are found everywhere. They often form on metal surfaces and on the surfaces of polymeric compounds. Biofilms are sticky and mostly consist of water. They have a strong resistance to antimicrobial agents and can cause serious problems for modern medicine and industry. Biofilms are composed of extracellular polymeric substances (EPS) such as polysaccharides produced from bacterial cells and are dominated by water at the initial stage. In a series of experiments, using Escherichia coli, we developed three types of laboratory biofilm reactors (LBR) to simulate biofilm formation. For the first trial, we used a rotary type of biofilm reactor for stirring. For the next trial, we tried another rotary type of reactor where the circular plate holding specimens was rotated. Finally, a circular laboratory biofilm reactor was used. Biofilms were evaluated by using a crystal violet staining method and by using Raman spectroscopy. Additionally, they were compared to each other from the practical (industrial) viewpoints. The third type was the best to form biofilms in a short period. However, the first and second were better from the viewpoint of “ease of use”. All of these have their own advantages and disadvantages, respectively. Therefore, they should be properly selected and used for specific and appropriate purposes in the future.

Publisher

MDPI AG

Subject

General Materials Science

Reference39 articles.

1. Bioengineering report: Fouling biofilm development: A process analysis

2. Biofilms and Microbial Fouling;William,1983

3. Bacterial Biofilms in Nature and Disease

4. Bacterial biofilms and surface fouling

5. Microbial Biofilm Formation and Characterisation;Lappin-Scott,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3