Biocompatibility of ZrO2 vs. Y-TZP Alloys: Influence of Their Composition and Surface Topography

Author:

Tchinda Alex,Chézeau Laëtitia,Pierson Gaël,Kouitat-Njiwa Richard,Rihn B H,Bravetti Pierre

Abstract

The osseointegration of implants is defined as the direct anatomical and functional connection between neoformed living bone and the surface of a supporting implant. The biological compatibility of implants depends on various parameters, such as the nature of the material, chemical composition, surface topography, chemistry and loading, surface treatment, and physical and mechanical properties. In this context, the objective of this study is to evaluate the biocompatibility of rough (Ra = 1 µm) and smooth (Ra = 0 µm) surface conditions of yttria–zirconia (Y-TZP) discs compared to pure zirconia (ZrO2) discs by combining a classical toxicological test, morphological observations by SEM, and a transcriptomic analysis on an in vitro model of human Saos-2 bone cells. Similar cell proliferation rates were observed between ZrO2 and Y-TZP discs and control cells, regardless of the surface topography, at up to 96 h of exposure. Dense cell matting was similarly observed on the surfaces of both materials. Interestingly, only 110 transcripts were differentially expressed across the human transcriptome, consistent with the excellent biocompatibility of Y-TZP reported in the literature. These deregulated transcripts are mainly involved in two pathways, the first being related to “mineral uptake” and the second being the “immune response”. These observations suggest that Y-TZP is an interesting candidate for application in implantology.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3