Microstructure and Friction Properties of CoCrFeMnNiTix High-Entropy Alloy Coating by Laser Cladding

Author:

Liu Pengfei,Si Wudong,Zhang Dabin,Dai Sichao,Jiang Benchi,Shu Da,Wu Lulu,Zhang Chao,Zhang Meisong

Abstract

To enhance the friction and wear properties of 40Cr steel’s surface, CoCrFeMnNi high-entropy alloy (HEA) coatings with various Ti contents were prepared using laser cladding. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were used to characterize the phase composition, microstructure, and chemical composition of the samples. The findings demonstrated that the CoCrFeMnNiTix HEA coatings formed a single FCC phase. Fe2Ti, Ni3Ti, and Co2Ti intermetallic compounds were discovered in the coatings when the molar ratio of Ti content was greater than 0.5. The EDS findings indicated that Cr and Co/Ni/Ti were primarily enriched in the dendrite and interdendrite, respectively. Ti addition can effectively enhance the coating’s mechanical properties. The hardness test findings showed that when the molar ratio of Ti was 0.75, the coating’s microhardness was 511 HV0.5, which was 1.9 times the hardness of the 40Cr (256 HV0.5) substrate and 1.46 times the hardness of the CrCrFeMnNi HEA coating (348 HV0.5). The friction and wear findings demonstrated that the addition of Ti can substantially reduce the coating’s friction coefficient and wear rate. The coating’s wear resistance was the best when the molar ratio of Ti was 0.75, the friction coefficient was 0.296, and the wear amount was 0.001 g. SEM and 3D morphology test results demonstrated that the coating’s wear mechanism changed from adhesive wear and abrasive wear to fatigue wear and abrasive wear with the increase in Ti content.

Funder

the Science and Technology Support Project of Guizhou Science and Technology De-partment

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3