The Investigation of Gas Distribution Asymmetry Effect on Coriolis Flowmeter Accuracy at Multiphase Metering

Author:

Shavrina Evgeniia,Zeng Yan,Khoo Boo Cheong,Nguyen Vinh-Tan

Abstract

Multiphase flows are encountered in various industries, and the Coriolis flowmeter (CFM) is considered a high potential flowmeter for the metering of these flows. However, the decoupling effect and asymmetrical gas distribution in a CFM might decrease the accuracy of its multiphase flow metering The asymmetry of gas distribution in a CFM and its influence on the metering accuracy have only been qualitatively investigated in a few studies. The present paper quantitatively describes the gas distribution asymmetry in several CFMs under different flow conditions by numerical simulation. The simulation methodology is developed and validated by a results comparison with a conducted experiment and published data for bubbly, stratified and transitional flow regimes. U-shaped and triangle-shaped CFMs of different diameters are investigated at different gas volume fractions and flow rates. It is shown that the increase in the gas volume fraction and the reduction in the mixture flow rate lead to the increase in the gas distribution asymmetry. The strong correlation between the gas distribution asymmetry and the experimentally observed CFM error is demonstrated. The correction of the CFM error is proposed based on this correlation allowing the metering error to be decreased from 34% to 10% for the investigated conditions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference57 articles.

1. Renewable energy carriers: Hydrogen or liquid air/nitrogen?

2. Liquid air as an energy storage;Lim;J. Eng. Sci. Technol.,2016

3. An Overview on Liquefied Natural Gas (LNG), Its Properties, the LNG Industry, and Safety Considerations;Foss,2012

4. Formation and stability of food foams and aerated emulsions: Hydrophobins as novel functional ingredients

5. The impact of bubbles on measurement of drug release from echogenic liposomes

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3