BMP8B Activates Both SMAD2/3 and NF-κB Signals to Inhibit the Differentiation of 3T3-L1 Preadipocytes into Mature Adipocytes

Author:

Zhong Shenjie1,Du Xueqing1,Gao Jing1,Ji Guangdong12,Liu Zhenhui12ORCID

Affiliation:

1. College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China

2. Laoshan Laboratory, Qingdao 266237, China

Abstract

Bone morphogenetic protein 8B (BMP8B) has been found to regulate the thermogenesis of brown adipose tissue (BAT) and the browning process of white adipose tissue (WAT). However, there is no available information regarding the role of BMP8B in the process of adipocyte differentiation. Here, we showed that BMP8B down-regulates transcriptional regulators PPARγ and C/EBPα, thereby impeding the differentiation of 3T3-L1 preadipocytes into fully mature adipocytes. BMP8B increased the phosphorylation levels of SMAD2/3, and TP0427736 HCl (SMAD2/3 inhibitor) significantly reduced the ability of BMP8B to inhibit adipocyte differentiation, suggesting that BMP8B repressed adipocyte differentiation through the SMAD2/3 pathway. Moreover, the knockdown of BMP I receptor ALK4 significantly reduced the inhibitory effect of BMP8B on adipogenesis, indicating that BMP8B triggers SMAD2/3 signaling to suppress adipogenesis via ALK4. In addition, BMP8B activated the NF-κB signal, which has been demonstrated to impede PPARγ expression. Collectively, our data demonstrated that BMP8B activates both SMAD2/3 and NF-κB signals to inhibit adipocyte differentiation. We provide previously unidentified insight into BMP8B-mediated adipogenesis.

Funder

Science & Technology Innovation Project of Laoshan Laboratory

National Key Research and Development Project of the Ministry of Science and Technology

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3