Abstract
Radio Frequency Identification (RFID) is one of the most widely used wireless communications technologies nowadays. Among the numerous processes executed within an RFID system, the identification processis the most important one. There have been several proposals to efficiently execute such a mechanism, which are based on the use of an RFID identification method. Besides, one of the most studied scenarios comprises one reader and a set of RFID tags, which we call the centralized approach. Recent work shows that executing the identification process in a distributed or parallel way may be of great benefit for applications with high requirements on time and resources usage, i.e., applications where the time required to execute the identification process needs to be low. In this paper, we focus is on large RFID systems and compare two identification mechanisms, one based on the centralized approach and the other based on the distributed approach. Our aim is to find the advantages and disadvantages of each approach for general RFID scenarios. We observe that the distributed approach is very promising compared to the traditional approach since considerable improvements are found in identification delay, and also the implementation costs would be highly reduced.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献